ENERGY CONSERVATION:

Common Sense Methods for Lightening the Load v3.0

PREPARED FOR: New Jersey Water Association 2022 Fall Conference PRESENTER: David J. Applegate, P.E., T3, W3

1

Presentation Outline

> Industry Nomenclature
> Water Industry Energy Usage Overview
> Efficiency Targets
> Pumps
> Motors
> Pipes
> Valves
> Energy Efficiency/Reclamation

Industry Nomenclature

Industry Nomenclature

> Horsepower (HP)
> Kilowatt (kW)
$>1 \mathrm{HP}=0.746 \mathrm{~kW}$ (or, 746 Watts)
> Water Horsepower (WHP)
> KiloWatt Hour (kWh)
> Water-to-Wire Efficiency (\%)
> Variable Frequency Drive (VFD) or Variable Speed Drive
> Total Dynamic Head (TDH)
> Cavitation - low/negative pressure implosions on impeller
$>$ Volute - area of the casing that the water is discharged to

Water Industry Energy Usage Overview

5

Water Industry Energy Usage Overview

Drinking Water and Wastewater Systems Account for Approximately 3-4 Percent of Energy Use in the United States, Adding Over 45 Million Tons of Greenhouse Gases

Water Industry Energy Usage Overview

Drinking Water and Wastewater Plants Are Typically the Largest Energy Consumers of Municipal Governments, Accounting for 30-40 Percent of Total Energy Consumed

7

Water Industry Energy Usage Overview

Energy As a Percent of Operating Costs for Drinking Water Systems Can Reach As High As 40 Percent and is Expected to Increase 20 Percent in the Next 15 Years Due to Population Growth and Tightening Drinking Water Regulation

Water Industry Energy Usage Overview

A University of Michigan Study Projects Electricity Consumption in the U.S. for Supply of Fresh Water to be 36 Billion kWh by 2020 and 46 Billion kWh by 2050
$>$ A 28\% increase in electrical consumption over 30 years

Efficiency Targets

Efficiency Targets

Source - U.S. DOE office of Industrial Technology

Pumps

13

Pumps

> Pump Efficiency Monitoring

- Ammeter testing (aka Megger Test)
- Calculate water-to-wire efficiency
> Reduced efficiency means:
- Compromised impeller (loss of diameter, damage, roughness)
- Compromised volute (damage (cavitation et al), roughness)

Pumps

> Mechanical Refurbishing

- New impellers
- New casing rings
- New mechanical seals
- New packing
- Shaft alignment(s)
$>$ Coating Rehabilitation
- Impeller
- Volute

15

Pumps

$>$ Shaft misalignment

- Can account for 3% to 5% incremental power consumption
$>$ Mechanical openings/wear surfaces
- Increased internal leakage
- Loss of efficiency
- Increased HP consumption

Pumps

> Interior pump rehabilitation/coating

- 5% to 10% improvement in efficiency
- Volute coating accounts for major portion, impeller to a lesser extent
> Best (most talked about) product
- 2-part ceramic filled epoxy systems
- Good for both new and old pumps
- Belzona 1321, or equal

Pumps

Pumps

Before

Pumps

Before
After

- KIELY

Pump and Motor Selection

> When possible, always choose lower rpm pump/motor combination
$>$ For VFD interaction, need motor that is inverter duty ready

Motors

> Motor Efficiency Monitoring

- Ammeter testing (aka Megger Test)
- Calculate water-to-wire efficiency
> Reduced efficiency means:
- Old motor
- Winding damage
- Moisture intrusion

Motors

> VFD Usage

- Reduces (multiple) start up amperage spikes
- Typically NOT ideal for potable water production wells
- IDEAL for booster pumps, sanitary sewage pumps, large HP motors

Motors - Electricity Primer

> For DC motors:
$\mathrm{P}=\mathrm{i} \mathrm{V}$
> For AC polyphase motors:
$\mathrm{P}=\mathrm{i} V(\mathrm{PF})(1.73)$
Where:
P = Power (Watts)
$\mathrm{i}=$ Current (amps)
$\mathrm{V}=$ Electromotive Force (Volts)
$\mathrm{PF}=$ Power Factor (usually 0.9 for standard 3-phase motors)
» Given same Power, P, LARGER V equates to a smaller i
746 Watts = 1 Horsepower (HP)

Motors - Electricity Primer

Motors - Horsepower Primer

WHP = Q (gpm) x TDH (feet) / 3960
BHP $=$ Q (gpm) \times TDH (feet) / (3960 x Efficiency of Pump, E_{p})
MHP $=Q(\mathrm{gpm}) \times$ TDH (feet) $/\left(3960 \times \mathrm{E}_{\mathrm{p}} \times\right.$ Efficiency of Motor, $\left.\mathrm{E}_{\mathrm{m}}\right)$
$\mathrm{E}_{\text {TOTAL }}=\mathrm{E}_{\mathrm{p}} \times \mathrm{E}_{\mathrm{m}}$
E_{p} Generally Ranges from 40\% to 75\%
E_{m} Generally Ranges from 90% to 95%

Hypothetical Working Example

Situation:

Vertical turbine pump (VTP) has experienced diminished pumping capability over time
Knowns:
100 HP motor
480 Volts
1,800 rpm
Motor Efficiency: 90\% (new)
Pump Efficiency: 70\% (new)
Design Point: 1,000 gpm @ 250 feet TDH

Hypothetical Working Example (cont'd)

Measured:
> When at full speed, average ammeter reading on all three legs reads 80 amps
$>$ Discharge pressure gauge reading of 87 psi (200 feet)

Therefore, $P($ Watts $)=80 \times 480 \times(0.9)(1.73)=59,789$ Watts
$\mathrm{HP}=59,789 \mathrm{Watts} / 746 \mathrm{Watts} / \mathrm{HP}=80 \mathrm{HP}$
$\mathrm{HP}_{\text {measured }} 80$ vs. $\mathrm{HP}_{\text {design }} 100=\Delta$ of 20 HP

Hypothetical Working Example (cont'd)

A Second Check:
MHP = Q (gpm) x TDH (feet) / (3960 x $\mathrm{E}_{\text {TOTAL }}$)
$80 \mathrm{HP}=\mathrm{Q} \times 250$ feet /(3960 x 0.63)
$Q=80 \times(2,495) / 250=798 \mathrm{gpm}$

Conclusions

aPump impeller probably diminished in diameter or damaged
-Motor windings old and/or damaged
\square Volute tuberculated or damaged

Hypothetical Working Example (cont'd)

What would have been the proper ammeter reading for a pump/motor combination running at their design points?
100 amps
Know your equipment. Know their service settings.
口HP
-Amperage draw
-TDH
\square gpm

Pipes

Pipes

> Pipe Cleaning/Maintenance

- Force mains:
* Pigging stations
* Chemical feed/scrubbing
- Water mains:
* Chemical balance (Langlier Index)
* Cleaning and lining
* Replacement

Pipes

Pigs

Pipes - Friction Loss Calculation

Hazen-Williams Formula

$$
H_{f}=\left((147.85 \times Q) /\left(C \times D^{2.63}\right)\right)^{1.852} \text { per 1,000 feet of pipe }
$$

Where:
$H_{f}=$ friction head, in feet
$Q=$ flow, in gallons per minute (gpm)
C = Hazen-Williams friction factor
D = pipe diameter, in inches

Pipes - Friction Loss Calculation

* Calculating friction losses in closed conduit piping
- Hazen-Williams friction coefficient, "C"
- Darcy-Weisbach formula, using Reynolds number
- Good Reference Material: Cameron Hydraulic Tables
* Most common modeling and design criteria use "C"
- Use C = 80 (or less) for old, heavily tuberculated piping
- Use C = 100 for old or wastewater piping
- Use C = 120 for moderate, well kept water piping
- Use C = 150 for new, DIP cement lined piping

Pipes - Flow \& Friction Measurement

Pipes - Pumping Cost

Cost to pump through a given pipeline, PC, is a function of head loss, power cost, and efficiency

$$
\mathrm{PC}=1.65 \mathrm{H}_{\mathrm{L}} \mathrm{Q} \frac{a}{E}
$$

where: $\quad \mathrm{PC}=$ Pumping cost ($\$ / \mathrm{yr}$. based on 24 hr ./day)
$\mathrm{H}_{\mathrm{L}}=$ Head loss (ft./1000 ft.)
Q = Flow (gpm)
a = Unit cost of electricity (\$/KWH)
$\mathrm{E}=$ Total efficiency of pump system (\%/100)

Valves

Valves - Throttled Conditions

> Valve Selection - Flow Control

- Globe valves
- Ball valves
- Eccentric plug valves
- Butterfly valves
- Swing check valves
- Tilted disk check valves
> Valve Selection - Pressure Reduction
- Globe valves
- Ball valves
- Eccentric plug valves

Valves - Throttled Conditions

Valves - Friction Factors (aka Efficiency Bleeders)

$>\mathrm{C}_{\mathrm{v}}$: Flow coefficient (size specific rating)

- High C_{v} good, low C_{v} bad
> K factor: Resistance coefficient
- Low K good, high K bad

Valves - Efficiencies			
Type of Valve (12")	Port Size	Cv	K
Control Valve	100\%	1800	5.7
Silent Check Valve	100\%	2500	2.95
Swing Check Valve	80\%	3410	1.58
Dual Disc Check Valve	80\%	4000	1.15
Nozzle Check Valve	100\%	4700	. 083
Ball Check Valve	100\%	4700	. 083
Eccentric Plug Valve	80\%	4750	. 081
Surgebuster Check Valve	100\%	4800	. 80
Tilted Disc Check Valve	140\%	5400	. 63
Butterfly Valve	90\%	6550	. 43
Cone Valve	100\%	21,500	. 04
Ball Valve	100\%	22,800	. 03

43

Valves - Partially Open/Restricted

Conventional Swing Check Valve
(Lever \& Weight or Spring Controlled)

45

Valves - Fully Open/Unrestricted

"Surgebuster" or "SwingFlex" Swing-type Check Valve

Valves - Pressure Management

> Pressure Reduction - via SCADA (remote)

- Concept: Remotely actuate water system PRV valves to decrease system pressures during off-peak times, and increase pressure during peak flow periods
- Reduces Non-Revenue Water loss
- Reduces pump run times
- "Smart" PRV valves:
* Low pressure during low demand
* Higher pressure during high demand

Energy Efficiency/Reclamation

$>$ Off-Peak Pumping

* Off-peak hours for the purposes of electrical billing are Saturday, Sunday, and 8 PM to 8 AM Mon through Fri
* Lower kW/hr rates
> Pumping Optimization
* Applies to larger HP motors
* Necessarily involves VFDs
* Consists of running more pumps at lower RPMs/speeds instead of running one pump at full speed

Energy Efficiency - Off-Peak Pumping
 Electrical Demand Analysis

Month	From Interval Data:			From JCP\&L Bills:			Potential Demand Savings Calculation:		
	Estimated Minimum Demand, kW	Estimated Max Demand without Reservoir Pumping, kW	Max Demand with Reservoir Pumping, kW	On Peak Demand, kW	Off Peak Demand, kW	Existing Demand Charge	Potential Demand Savings without On- Peak Reservoir Pumping, kW	Potential Demand Charge without OnPeak Reservoir Pumping	Estimated Demand Charge Savings
May 2013	300	1,000	1,369	1,238	1,231	\$7,884	238	\$6,370	\$1,514
Jun. 2013	400	1,000	1,430	1,430	1,402	\$9,838	430	\$6,880	\$2,958
Jul. 2013	400	1,000	1,782	1,687	1,782	\$11,607	687	\$6,880	\$4,727
Aug. 2013	500	900	1,525	1,620	1,642	\$11,146	720	\$6,192	\$4,954
Sept. 2013	400	1,100	1,337	1,313	1,337	\$9,036	213	\$7,568	\$1,468
Oct. 2013	400	900	1,227	849	1,227	\$5,407	-	\$5,407	\$0
Nov. 2013	500	800	1,402	793	849	\$5,049	-	\$5,049	\$0
Dec. 2013	600	850	1,393	1,382	1,402	\$8,806	532	\$5,415	\$3,391
Jan. 2014	500	1,000	1,367	1,367	1,354	\$8,710	367	\$6,370	\$2,340
Feb. 2014	400	800	1,268	1,236	1,268	\$7,870	436	\$5,096	\$2,774
Mar. 2014	350	700	717	655	912	\$4,169	-	\$4,169	\$0
Apr. 2014	400	650	1,277	1,277	1,227	\$8,132	627	\$4,152	\$3,980
KW Charge: (Demand Charge) Potential Annual Savings:									
	max	r June-Sep							

\$2.33 per KW Minimum Charge
1,782 $\mathrm{kW}=$ highest on-peak or off-peak demand created in the current and preceding eleven months
MINIMUM DEMAND CHARGE PER MONTH: The monthly KW Demand Charge under Distribution Charge shall be the greater of (1)
the product of the KW Charge per maximum KW and the current month's maximum demand created during on-peak hours; or (2)
the product of the KW Minimum Charge and the highest on-peak or off-peak demand created in the current and preceding eleven
months (but not less than the Contract Demand).
$\$ \quad 4,152=\$ 2.33 \times 1782$, Minimum Demand charge for this 12 month period

Energy Efficiency/Reclamation

> Hydro Microturbines

* For use in potable water transmission or distribution mains
* In lieu of conventional PRVs
* Minimum 1.0 MGD flow, $\Delta=40$ to 50 psi min, ideal
* Pressure drop that would normally be lost via heat in a PRV now spins a turbine that generates electricity back to the grid
* Existing PRV stays in place downstream

Energy Efficiency/Reclamation

Energy Efficiency/Reclamation

Energy Efficiency/Reclamation

> Wastewater Gas Microturbines

* Similar to turbocharger equipment used in jet engines
* Utilizes methane gases off of digesters for power source
> Wastewater Open Channel Microturbines
* A concept
* Would utilize head of water from a WWTP discharge

Energy Efficiency/Reclamation

Figure 1: Microturbine Flow Diagram
(Source:www.wastegaspower.com/images/microturbine.jpg)

Questions

Thank You!

Contact Information:
dapplegate@kielybuilds.com

