

Industry Nomenclature Horsepower (HP) Kilowatt (kW) 1 HP = 0.746 kW (or, 746 Watts) Water Horsepower (WHP) KiloWatt Hour (kWh) Water-to-Wire Efficiency (%) Variable Frequency Drive (VFD) or Variable Speed Drive Total Dynamic Head (TDH) Cavitation – low/negative pressure implosions on impeller Volute – area of the casing that the water is discharged to

K KIELY

Hypothetical Working Example (cont'd)

<u>A Second Check:</u> MHP = Q (gpm) x TDH (feet) / (3960 x E_{TOTAL}) 80 HP = Q x 250 feet /(3960 x 0.63) Q = 80 x (2,495)/250 = 798 gpm

Conclusions

Pump impeller probably diminished in diameter or damaged

□Motor windings old and/or damaged

□Volute tuberculated or damaged

Hypothetical Working Example (cont'd)

What would have been the proper ammeter reading for a pump/motor combination running at their design points?

100 amps

Know your equipment. Know their service settings. $\hfill HP$

□Amperage draw □TDH

□gpm

KIELY

Pipes – Friction Loss Calculation Hazen-Williams Formula

 $H_f = ((147.85 \text{ x Q})/(C \text{ x D}^{2.63}))^{1.852}$ per 1,000 feet of pipe

Where:

 H_{f} = friction head, in feet

Q = flow, in gallons per minute (gpm)

C = Hazen-Williams friction factor

D = pipe diameter, in inches

KIELY

Pipes – Pumping Cost

Cost to pump through a given pipeline, PC, is a function of head loss, power cost, and efficiency

PC= 1.65 H_LQ $\frac{\alpha}{E}$

- where: PC = Pumping cost (\$/yr. based on 24 hr./day) H_L = Head loss (ft./1000 ft.) Q = Flow (gpm) a = Unit cost of electricity (\$ /KWH) E = Total efficiency of pump system (% /100)

K KIELY

Гуре of Valve (12″)	Port Size	Cv	K
Control Valve	100%	1800	5.7
Silent Check Valve	100%	2500	2.95
Swing Check Valve	80%	3410	1.58
Dual Disc Check Valve	80%	4000	1.15
Nozzle Check Valve	100%	4700	.083
Ball Check Valve	100%	4700	.083
Eccentric Plug Valve	80%	4750	.081
Surgebuster Check Valve	100%	4800	.80
Tilted Disc Check Valve	140%	5400	.63
Butterfly Valve	90%	6550	.43
Cone Valve	100%	21,500	.04
Ball Valve	100%	22,800	.03

Valves – Pressure Management

- Pressure Reduction via SCADA (remote)
 - Concept: Remotely actuate water system PRV valves to decrease system pressures during off-peak times, and increase pressure during peak flow periods
 - Reduces Non-Revenue Water loss
 - Reduces pump run times
 - "Smart" PRV valves:
 - Low pressure during low demand
 - ✤ Higher pressure during high demand

KIELY

					Electrical [emand Ana	lysis		
	From Interval Data:			From JCP&L Bills:		Potential Demand Savings Calculation:			
	Estimated						Potential		
	1	Max	Max				Demand	1 1	
	1	Demand	Demand				Savings	Potential	
	Estimated	without	with				without On-	Demand Charge	Estimated
	Minimum	Reservoir	Reservoir	On Peak	Off Peak	Existing	Peak	without On-	Demand
	Demand,	Pumping,	Pumping,	Demand,	Demand,	Demand	Reservoir	Peak Reservoir	Charge
Month	kW	kW	kW	kW	kW	Charge	Pumping, kW	Pumping	Savings
May 2013	300	1,000	1,369	1,238	1,231	\$7,884	238	\$6,370	\$1,514
Jun. 2013	400	1,000	1,430	1,430	1,402	\$9,838	430	\$6,880	\$2,958
Jul. 2013	400	1,000	1,782	1,687	1,782	\$11,607	687	\$6,880	\$4,727
Aug. 2013	500	900	1,525	1,620	1,642	\$11,146	720	\$6,192	\$4,954
Sept.2013	400	1,100	1,337	1,313	1,337	\$9,036	213	\$7,568	\$1,468
Oct. 2013	400	900	1,227	849	1,227	\$5,407	-	\$5,407	\$0
Nov. 2013	500	800	1,402	793	849	\$5,049	-	\$5,049	\$0
Dec. 2013	600	850	1,393	1,382	1,402	\$8,806	532	\$5,415	\$3,391
Jan. 2014	500	1,000	1,367	1,367	1,354	\$8,710	367	\$6,370	\$2,340
Feb. 2014	400	800	1,268	1,236	1,268	\$7,870	436	\$5,096	\$2,774
Mar. 2014	350	700	717	655	912	\$4,169	-	\$4,169	\$0
Apr. 2014	400	650	1,277	1,277	1,227	\$8,132	627	\$4,152	\$3,980
	KW Charge:	: (Demand Ch	narge)				Potentia	Annual Savings:	\$28,105
\$6.88	per max KW	√ for June-Ser	ot				i otentia	, and a subscripting st	
\$6.37	per max KW	for Oct-May	/						
\$2.33	per KW Min	imum Charge	e						
1,782	kW = highe	est on-peak o	r off-peak d	emand crea	ated in the cr	urrent and pr	receding eleven	months	
-,			· · · · · ·						

Questions

Thank You!

Contact Information:

dapplegate@kielybuilds.com

K KIELY